Funksiyalarning xossalari mavzusidan test savollari



Ushbu f(x)=\frac{x-2}{x^{2}-1} funksiyaning aniqlanish sohasini toping .

Ushbu F(x)=\frac{x-3}{x^{2}-4} funksiyaning aniqlanish sohasini toping .

Funksiyaning aniqlanish sohasini toping.

f (x)=\frac{x+2}{x^{2}-1}

k ning qanday butun qiymatlarida y= \frac{x^{2}+3x}{x^{2}+kx+1} funksiyaning aniqlanish sohasi (- \infty ;1) \cup (1;\infty ) bo‘ladi?

Funksiyaning aniqlanish sohasini toping.

y= \frac{2x-3}{x(x+2)}

Agar f (x)=(1+\frac{1}{x})( 7+4x ) bo‘lsa, f(-\frac{1}{2}) ni toping .

Agar f (x)=(x- \frac{1}{3})(2x+\frac{1}{4}) bo‘lsa, f(-\frac{1}{2}) ni toping .

Agar f(x)=(2x+1)(\frac{3}{x}- 3) bo‘lsa, f(-1) ni toping.

f(x)=\begin{cases}{2x^{2}+1, \vert x\vert<3} \\{ 5x-1, \vert x\vert \ge 3}\end{cases} funksiya berilgan f(x^{2}+7) funksiyani toping

Agar f(x)= x^{2}-8x+7 bo‘lsa, f(4-\sqrt{11}) ni hisoblang.

Quyidagi funksiyalardan qaysi biri juft?

Quyidagi funksiyalardan qaysi biri toq?

Quyidagilardan qaysi biri juft funksiya?

Quyidagi funksiyalardan qaysi biri toq?

y=x|x| funksiya uchun qaysi tasdiq to‘g‘ri?

g(x)=\frac{x^{2}+1}{x^{2}-1} funksiya berilgan.

g(\frac{\sqrt{a^{2}-1}}{a-1}) ni toping. (\vert a\vert > 1)

y(x)= x^{2} funksiya berilgan.

0.5y(x)-2y(\frac{1}{x}) ni toping.

Agar f(x)=\frac{x^{2}-1}{x^{2}} , g(x)=\frac{1}{x^{2}} bo‘lsa, f(g(2)) ni hisoblang.

y=(x+3)(x^{2}+x+1) funksiya grafigining OY o‘qi bilan kesishish nuqtasi ordinatasini toping.

Agar f(x)= \sqrt{x^{3}-1} bo‘lsa , f(\sqrt[3]{x^{2}+1}) nimaga teng?

Agar f(x)=\begin{cases}{\vert x+1\vert , x> -2}\\{3-4\vert x\vert , x\le -2 }\end{cases} bo‘lsa, f(-1)-f(-3) ni hisoblang.

y=f(x) funksiyani aniqlanish sohasi [-1;2] dan iborat.

y=f(1+x) funksiyaning aniqlanish sohasini toping.

Agar f(x)=\frac{2x+1}{3x-1} bo‘lsa, f(\frac{1}{x})+f(\frac{x}{9}) funksiyani anqilang.

f(\frac{3x-2}{2})= x^{2}-x-1

f(0)-?

f(\frac{3x-2}{2})= x^{2}-x-1

f(1)-?

Agar f(x+1)=3-2x va f(\phi (x))= 6x-3 bo‘lsa, \phi (x) funksiyani aniqlang.

Agar f(x+2)=x^{3}+6x^{2}+12x+8 bo‘lsa, f(\sqrt{3}) ni toping.