Logarifm mavzusidan test savollari
Agar log _{2}10=b, log _{7}2=a bo‘lsa, log _{4}78.4 ni a va b orqali ifodalang.
lgtg1^\circ+lgtg2^\circ+lgtg3^\circ+\ldots +lgtg89^\circ
\log _{4}a=log_{8}b bo‘lsa, \log _{b}a=?
a>1, \frac{3}{\log _{2}(2a)}+\frac{3}{\log _{a}(2a)}=?
5\log _{5}\log _{5}\sqrt[5]{5} ni hisoblang.
\log _{2}a=x, \log _{a}4=y, xy=?
8^{\frac{\log _{2}20\log _{4}12}{1+\log _{4}3}} ni hisoblang.
\frac{2+\log _{2}6}{\log _{96}2}-\frac{6+\log _{2}3}{\log _{12}2} ni hisoblang.
\log _{25}a=\log _{125}b bo‘lsa, \log _{a}b=?
\log _{5}a=x, \log _{2}5=y;
xy=?
\frac{2+\log _{2}6}{\log _{96}2}-\frac{6+\log _{2}3}{\log _{12}2} ni hisoblang.
Quyidagilardan qaysi biri musbat emas?
a=\log _{13}19;
b=\log _{\sqrt[3]{3}}\sqrt{0.8};
c=\log _{\sqrt{7}}\frac{8}{11};
d=\log _{\sqrt[2]{\frac{1}{2}}}5
\log _{2012}\log _{5}\log _{2}32 ni hisoblang.
2^{\log _{8}2012}\cdot 9^{\frac{1}{3}\log _{3}2012} ni hisoblang.
\frac{1}{3}\cdot 100^{\frac{1}{2}lg27-lg3}\cdot 10 ni hisoblang.
13^{\log _{169}(2\sqrt{2}-5)^{2}}+2\sqrt{2}+5 ni hisoblang.
\log _{9}a=\log _{27}b bo‘lsa, \log _{a}b=?
Quyidagilardan qaysi biri manfiy?
a = log _{0.5}0.6;
b = log _{\sqrt{2}}\sqrt{3};
c = log _{\sqrt{3}}\sqrt{0.9};
d = \log _{7}\sqrt{0.27}
\frac{\log _{2}625\log _{5}256}{\log _{7}729\log _{3}343}ifodani soddalashtiring.
Hisoblang: (1 - \log _{7}42)(1 - \log _{6}42)
20\log _{12\sqrt{12}}12^{3} ni hisoblang.
2012\cdot \log _{3\sqrt{3}}\sqrt[4]{27} ni hisoblang.
Quyidagi sonlardan qaysi biri 1 ga teng emas?
y =log _{5}(x) - 18 funksiyaning qiymatlar to‘plamini toping.
y = \log_{3}(x) - 20 funksiyaning qiymatlar to‘plamini toping.
y = log_{2}x-19 funksiyaning qiymatlar to‘plamini toping.