Murakkab funksiyaning hosilasi mavzusidan test savollari



Ushbu g(x)=\frac{1}{3}ctg3x funksiyaning hosilasini g^{'}(\frac{\pi }{18}) ni hisoblang.

Agar f(x)=3x^{2}\cdot e^{\sin x}-8 bo‘lsa, f^{'}(\pi ) ning qiymatini toping.

Agar f(x)=(x-2)^{2}\cdot (x+4) bo‘lsa, f^{'}(x)\le 0 tengsizlikni yeching.

Agar f(x)=x\cdot 2^{x+1} bo‘lsa, f^{'}(0) ni toping.

Ushbu y=\cos (x^{3}-5) funksiyaning hosilasini toping.

Ushbu f(x)=\ln (x^{2}-3\sin x) funksiyaning hosilasini toping.

Ushbu f(x)=e^{\sin 2x} funksiyaning hosilasini toping.

Agar f(x)=\ln \sin x bo‘lsa, f^{'}(\frac{\pi }{6}) ni toping.

Ushbu y=\cos (x^{2}+3) funksiyaning hosilasini toping.

Ushbu f(x)=\ln (x^{2}-3\cos x) funksiyaning hosilasini toping.

Ushbu f(x)=e^{\sin 3x} funksiyaning hosilasini toping.

Ushbu y=\sin (x^{3}-5) funksiyaning hosilasini toping.

Funksiyaning hosilasini toping.

f(x)=\ln (x^{2}+3\sin x)

Ushbu f(x)=e^{\cos 2x} funksiyaning hosilasini toping.

Hosila f^{'}(\frac{\pi }{9}) ni hisoblang.

f(x)=-\frac{1}{3}\cdot tg3x

Agar f(x)=\ln \cos x bo‘lsa, f^{'}(\frac{\pi }{4}) ni hisoblang.

Agar f(x)=\ln \cos x bo‘lsa, f^{'}(\frac{\pi }{4}) ni hisoblang.

Agar f(x)=2\sqrt{3}\cos 4x-2\cos x bo‘lsa, f^{'}(\frac{\pi }{6}) ni hisoblang.

Ushbu y=\log _{2}(4x)-\cos (x^{2}+3x) funksiyaning hosilasini toping.

Ushbu y=\sin (\sin x) funksiyaning hosilasini toping.

Agar f(x)=\ln \sin x bo‘lsa, f^{'}(\frac{\pi }{4}) ni hisoblang.

Agar f(x)=(x^{2}+1)^{2} bo‘lsa, f^{'}(\frac{1}{2}) ni toping.

Ushbu y=\sin (\cos x) funksiyaning hosilasini toping.

Ushbu y=e^{ctgx} funksiyaning hosilasini toping.

Ushbu y=\lg(tg4x)+\sin (x^{2}+x+4) funksiyaning hosilasini toping.

Agar f(x)=3\cos 2x-\sin 2x bo‘lsa, f^{'}(\frac{\pi }{8}) ni hisoblang.

Hosila f^{'}(\frac{\pi }{6}) ni hisoblang.

f(x)=0.5tg2x

Ushbu y=-\frac{1}{7}\sin (7x-5) funksiyaning hosilasini toping.

Ushbu y=\log _{5}2x funksiyaning hosilasini toping.

Agar f(x)=3x-2e^{-x} bo‘lsa, f^{'}(\ln 2) ni hisoblang.