Arksinus, akrkosinus, arktangens va arkkotangens mavzusidan test savollari
\sin (300arccos(-\frac{\sqrt{2}}{2})) ni hisoblang.
ctg(2\pi -3arcsin\frac{\sqrt{2}}{2}) ni hisoblang.
tg(arcsin(-\frac{1}{3})+\frac{\pi }{2}) ning qiymatini toping.
sin (arcsin\frac{1}{2}+arccos\frac{1}{2}) ni hisoblang.
\sin (2arctg3)-\cos (2arctg2) ni hisoblang.
tg(arctg\frac{1}{3}+arctg\frac{1}{9}) ning qiymatini hisoblang.
sin (arctg(-\frac{2}{3})) ni hisoblang.
cos (2arcsin\frac{4}{5}) ni hisoblang.
arctg\sqrt{2}-arctg\frac{1}{\sqrt{2}} ni hisoblang.
ctg(arccos(-\frac{1}{3})-\pi ) ni hisoblang
tg(arctg2-arccos\frac{12}{13}) ni hisoblang.
tg(\pi -arcsin\frac{3}{5}) ni hisoblang.
arcctg3-arctg2 ni hisoblang.
arcsin\frac{4}{5}+arccos\frac{1}{\sqrt{50}} ni hisoblang.
cos (2arcsin\frac{3}{5}) ni hisoblang.
tg(arctg3+arctg7) ni hisoblang.
12arcsin(-\frac{1}{2})/\pi ni hisoblang.
\frac{\pi }{24}(8x+1)=arccos(-\frac{1}{2})+arcsin\frac{1}{2}-\frac{1}{2}arctg1 tenglamani yeching.
\cos (arctg\sqrt{3}+arccos\frac{\sqrt{3}}{2}) ni hisoblang.
Ushbu q=\log _{2}\sqrt{5;} p=tg(arcctg\frac{1}{5}) va k=2^{-\frac{4\pi }{3}} sonlarni kamayish tartibida yozing.
Hisoblang sin (2arcsin\frac{4}{5})
Ifodaning qiymatini toping: \cos (arcctg(-\frac{1}{5}))
Hisoblang: arctg\frac{1}{3}+arctg\frac{1}{9}+arctg\frac{7}{19}
Ifodaning qiymatini toping: arctg3-arcsin\frac{\sqrt{5}}{5}
Hisoblang: tg(\frac{1}{2}arcsin\frac{5}{13})
Hisoblang. sin (2arctg0.75)
Ifodaning qiymatini toping: \cos (2arcsin\frac{2}{5})
Hisoblang: tg(2arcsin\frac{3}{4})
Hisoblang: \cos (2arcsin\frac{1}{3})
Hisoblang: \cos (2arccos\frac{1}{3})