Keltirish formulalari mavzusidan test savollari
Agar \alpha -\beta =\frac{\pi }{2} bo‘lsa, \frac{sin\alpha -sin\beta }{cos\alpha +cos\beta } ning qiymatini toping.
y=cos(-7.9\pi)\cdot tg(-1.1\pi)-sin(5.6\pi)\cdot ctg(4.4\pi) ni soddalashtiring.
tg240^\circ, sin 120^\circ, cos150^\circ va ctg225^\circ sonlardan eng kattasining eng kichigiga ko‘paytmasini toping.
\frac{sin(\pi+\alpha)}{sin(\frac{3\pi}{2}+\alpha)}+\frac{cos(\pi-\alpha)}{cos(\frac{\pi}{2}+\alpha)-1} ni soddalashtiring.
ctg{37^\circ}{\cdot}ctg{38^\circ}{\cdot}{_\cdots}{\cdot}ctg{52^\circ}{\cdot}ctg{53^\circ}ni hisoblang.
tg1395^\circ ni hisoblang.
\sin^2(3570^\circ) ning qiymatini hisoblang.
(\sin \frac{\pi }{9}-\cos \frac{7\pi }{18}) ni hisoblang.
Hisoblang: lg(tg22^\circ) +lg(tg68^\circ)+lg(sin90^\circ)
Tenglamani yeching: \frac{3}{2}x-\frac{4}{5}=\sqrt{\sin 30^\circ+\sin \frac{7\pi }{4}}
Qaysi ifoda ma’noga ega emas?
1)\sqrt{lg\frac{11\pi }{8}};
2)\sqrt{\sin \frac{19\pi }{12}};
3)\log _{\sqrt{\frac{\pi }{3}}}\sqrt[3]{\frac{3\pi }{8}}
Qaysi ifoda ma’noga ega?
1)\log _{3}\sin \frac{6\pi }{5};
2)\log _{2}\cos \frac{23\pi }{12};
3)\sqrt{tg\frac{7\pi }{12}}
Hisoblang: \cos 870^\circ
Hisoblang. ((3\cdot 128^{\frac{3}{7}}\cdot e^{-ln48})^{-\frac{1}{2}}-(tg\frac{7\pi }{6})^{-1})^{2}+\frac{12}{\sqrt{6}}
Hisoblang. \log _{5}tg36^\circ+\log _{5}tg54^\circ
Soddalashtiring: \frac{tg(\pi-\alpha)}{cos(\pi+\alpha)}{\cdot}\frac{sin(\frac{3\pi}{2}+\alpha)}{tg(\frac{3\pi}{2}+\alpha)}
Soddalashtiring: \frac{\sin (\frac{\pi }{2}-\alpha )\cdot \cos (\pi +\alpha )}{ ctg(\pi +\alpha ) \cdot tg(\frac{3\pi }{2}-\alpha )}
Soddalashtiring: tg\alpha\cdot ctg(\pi +\alpha ) + ctg^2a
tg{1^\circ}{\cdot}tg{2^\circ}{\cdot}{_\cdots}{\cdot}tg{88^\circ}{\cdot}tg{89^\circ}ni hisoblang.
Noto‘g‘ri tenglikni ko‘rsating.
Soddalashtiring:\frac{tg(\frac{\pi}{2}+\alpha)}{cos(2\pi-\beta)}
Ifodani soddalashtiring. cos^{2}(\pi +x)+\cos^2(\frac{\pi }{2}+x)
Soddalashtiring: cos(\frac{3\pi}{2}-\alpha)\cdot tg(\pi-\beta)
Soddalashtiring: sin(\frac{3\pi}{2}+\alpha)\cdot ctg(\pi+\beta)
Soddalashtiring: \frac{sin(2\pi-\alpha)}{ctg(\frac{3\pi}{2}-\beta)}
Keltirilgan sonlardan eng kattasini toping.
Hisoblang: tg\frac{\pi }{6}\cdot \sin \frac{\pi }{3}\cdot ctg\frac{5\pi }{4}
Hisoblang: \cos (-45^\circ) + \sin (315^\circ) + tg(-855^\circ)
Hisoblang: sin (-45^\circ) + cos (405^\circ) + tg(-945^\circ)
Hisoblang: sin (1050^\circ) - \cos (-90^\circ) +ctg( 660^\circ)